Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38483264

RESUMO

The balance between energetic costs and acquisition in free-ranging species is essential for survival, and provides important insights regarding the physiological impact of anthropogenic disturbances on wild animals. For marine mammals such as beluga whales (Delphinapterus leucas), the first step in modeling this bioenergetic balance requires an examination of resting and active metabolic demands. Here, we used open-flow respirometry to measure oxygen consumption during surface rest and submerged swimming by trained beluga whales, and compared these measurements with those of a commonly studied odontocete, the Atlantic bottlenose dolphin (Tursiops truncatus). Both resting metabolic rate (3012±126.0 kJ h-1) and total cost of transport (1.4±0.1 J kg-1 m-1) of beluga whales were consistent with predicted values for moderately sized marine mammals in temperate to cold-water environments, including dolphins measured in the present study. By coupling the rate of oxygen consumption during submerged swimming with locomotor metrics from animal-borne accelerometer tags, we developed predictive relationships for assessing energetic costs from swim speed, stroke rate and partial dynamic acceleration. Combining these energetic data with calculated aerobic dive limits for beluga whales (8.8 min), we found that high-speed responses to disturbance markedly reduce the whale's capacity for prolonged submergence, pushing the cetaceans to costly anaerobic performances that require prolonged recovery periods. Together, these species-specific energetic measurements for beluga whales provide two important metrics, gait-related locomotor costs and aerobic capacity limits, for identifying relative levels of physiological vulnerability to anthropogenic disturbances that have become increasingly pervasive in their Arctic habitats.


Assuntos
Beluga , Golfinho Nariz-de-Garrafa , Caniformia , Mergulho , Animais , Natação , Consumo de Oxigênio , Cetáceos
2.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357378

RESUMO

Unlike the majority of marine mammal species, Hawaiian monk seals (Neomonachus schauinslandi) and West Indian manatees (Trichechus manatus latirostris) reside exclusively in tropical or subtropical waters. Although potentially providing an energetic benefit through reduced maintenance and thermal costs, little is known about the cascading effects that may alter energy expenditure during activity, dive responses and overall energy budgets for these warm-water species. To examine this, we used open-flow respirometry to measure the energy expended during resting and swimming in both species. We found that the average resting metabolic rates (RMRs) for both the adult monk seal (753.8±26.1 kJ h-1, mean±s.e.m.) and manatees (887.7±19.5 kJ h-1) were lower than predicted for cold-water marine mammal species of similar body mass. Despite these relatively low RMRs, both total cost per stroke and total cost of transport (COTTOT) during submerged swimming were similar to predictions for comparably sized marine mammals (adult monk seal: cost per stroke=5.0±0.2 J kg-1 stroke-1, COTTOT=1.7±0.1 J kg-1 m-1; manatees: cost per stroke=2.0±0.4 J kg-1 stroke-1, COTTOT=0.87±0.17 J kg-1 m-1). These lower maintenance costs result in less variability in adjustable metabolic costs that occur during submergence for warm-water species. However, these reduced maintenance costs do not appear to confer an advantage in overall energetic costs during activity, potentially limiting the capacity of warm-water species to respond to anthropogenic or environmental threats that require increased energy expenditure.


Assuntos
Focas Verdadeiras , Trichechus manatus , Animais , Havaí , Locomoção , Mamíferos
3.
J Exp Biol ; 224(Pt 1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33257430

RESUMO

Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2 ) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2  recorders. Cervical air sac PO2  values at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2  difference was larger. Pre-dive cervical air sac PO2  values were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2  data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2  values at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2  profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.


Assuntos
Mergulho , Spheniscidae , Sacos Aéreos , Animais , Pulmão , Oxigênio
4.
J Exp Biol ; 220(Pt 6): 1135-1145, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298467

RESUMO

Exponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins (Tursiops truncatus). These data were then used to model the energetic cost of high-speed escape responses by other odontocetes ranging in mass from 42 to 2738 kg. The total cost per stroke during routine swimming by dolphins, 3.31±0.20 J kg-1 stroke-1, was doubled during maximal aerobic performance. A comparative analysis of locomotor costs (LC; in J kg-1 stroke-1), representing the cost of moving the flukes, revealed that LC during routine swimming increased with body mass (M) for odontocetes according to LC=1.46±0.0005M; a separate relationship described LC during high-speed stroking. Using these relationships, we found that continuous stroking coupled with reduced glide time in response to oceanic noise resulted in a 30.5% increase in metabolic rate in the beaked whale, a deep-diving odontocete considered especially sensitive to disturbance. By integrating energetics with swimming behavior and dive characteristics, this study demonstrates the physiological consequences of oceanic noise on diving mammals, and provides a powerful tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Mergulho , Metabolismo Energético , Natação , Orca/fisiologia , Animais , Feminino , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio , Condicionamento Físico Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...